[01-09] Graph Based Nonparametric Testing for High Dimensional Data----十大网赌网址

    <form id="hhahg"></form>

          <td id="hhahg"></td>

                <button id="hhahg"><datalist id="hhahg"></datalist><caption id="hhahg"><button id="hhahg"><embed id="hhahg"></embed></button></caption><i id="hhahg"><video id="hhahg"><form id="hhahg"><nav id="hhahg"><link id="hhahg"></link></nav></form></video></i><tbody id="hhahg"></tbody><bdo id="hhahg"><map id="hhahg"><embed id="hhahg"><span id="hhahg"><textarea id="hhahg"><q id="hhahg"></q><dt id="hhahg"></dt><p id="hhahg"><audio id="hhahg"></audio></p><kbd id="hhahg"></kbd><blockquote id="hhahg"><tfoot id="hhahg"><noframes id="hhahg">

                [01-09] Graph Based Nonparametric Testing for High Dimensional Data

                文章来源:  |  发布时间:2019-01-08  |  【打印】 【关闭


                  题目:Graph Based Nonparametric Testing for High Dimensional Data




                  This talk will focus on a common applied High-dimensional k-sample comparison problem. We constructed a class of easy-to-implement nonparametric distribution-free tests based on new statistical tools and unexplored connections with spectral graph theory. The test is shown to possess various desirable properties along with a characteristic exploratory flavor that has practical consequences. The numerical examples show that our method works surprisingly well under a broad range of situations.


                  Kaijun Wang is a PhD Candidate at the Department of Statistical Science, Temple University, working with Prof. Subhadeep Mukhopadyay.

                十大网赌网址 |十大正规赌博网站 |正规十大赌博平台大全 |173.cc | |手机版 | | 澳门赌博大小下载|金沙国际赌博|网上十大赌博信誉平台|苹果澳门赌场app下载|赌钱游戏官网|网赌十大平台|